حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین

Authors

سارا دوایی فر

s davaeefar دانشگاه آزاد اسلامی واحد دزفول یداله اردوخانی

yadollah ordokhani دانشگاه الزهرا

abstract

در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه  ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم ارز که با یک دستگاه معادلات جبری مطابقت دارد استفاده می کنیم. این توابع به ازای مقادیر مناسب m وk  از دقت زیادی برخوردارند و به ویژه خطای نسبی جواب های عددی اندک است. روش های ارائه شده به لحاظ محاسباتی بسیار ساده و جذاب هستند و مثال های عددی که در انتها بیان شده است کارایی و دقت این روش ها را نشان می دهند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

حل عددی معادلات انتگرال همرشتاین غیرخطی با استفاده از پایه لژاندر- برنشتاین

در این مقاله، یک روش عددی برای حل معادلات انتگرال همرشتاین غیرخطی، ارائه شده است. بدین منظور هسته با استفاده از روش تقریب کمترین مربعات و بر حسب پایه لژاندر- برنشتاین تقریب زده شده است. چندجمله ایهای لژاندر متعامدند و این ویژگی دقت تقریب را بهبود می بخشد. همچنین تابع مجهول به وسیله پایه برنشتاین تقریب زده شده است. ویژگی های مفید چند جمله ایهای برنشتاین به ما کمک می کند تا معادله انتگرال همرشتای...

full text

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

full text

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

full text

My Resources

Save resource for easier access later


Journal title:
علوم

جلد ۱۳، شماره ۲، صفحات ۳۰۵-۳۲۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023